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Last time I was in Manchester...
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Dynamic treatment regimes

I Dynamic treatment regimes (DTRs) ‘formalize’ the process of
precision medicine:

“If patient BMI over 30 prescribe therapy A, otherwise provide
therapy B.”

DTR Treatment
recommendation

Patient
information

I DTRs can lead to improved results over standard ‘one size fits
all’ approaches.



Notation
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DTR: treatment Aopt that maximizes E [Y |X ,Aopt ]



Identifying the best treatment regime: multi-stage
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Lots of methods available:
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Identifying the best treatment regime

I If only one treatment decision:

E [Y |X ,A]︸ ︷︷ ︸
Expected outcome
(to be maximized)

I We might propose the following model

E [Y |X ,A;β, ψ] = β0 + β1BMI + A(ψ0 + ψ1BMI)

“Treat (A = 1) if A(ψ0 + ψ1BMI > 0”
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I We might propose the following model

E [Y |X ,A;β, ψ] = β0 + β1BMI + A(ψ0 + ψ1BMI)

“Treat (A = 1) if A(ψ0 + ψ1BMI > 0”

I More generally, split outcome into two components:

E [Y |X ,A;β, ψ]︸ ︷︷ ︸
Expected outcome
(to be maximized)

=

Impact of patient history
in the absence of treatment︷ ︸︸ ︷

G (X ;β) + γ(X ,A;ψ)︸ ︷︷ ︸
Impact of treatment

on outcome

I Simplifies focus: find Aopt that maximizes γ(X ,A;ψ).



Identifying the best treatment regime

I Suppose the true outcome model is:

E [Y |X ,A;β, ψ] = β0 + β1BMI + β2BMI2 + A(ψ0 + ψ1BMI)

I But we propose:

E [Y |X ,A;β, ψ] = β0 + β1BMI + A(ψ0 + ψ1BMI)

I Problem: what if A depends on BMI?



Dynamic WOLS (dWOLS)

E [Y |X ,A;β, ψ] = G (X ;β) + γ(X ,A;ψ)

I Three models to specify:

1. Blip model: γ(X ,A;ψ).
2. Treatment-free model: G (X ;β).
3. Treatment model: P(A = 1|X ;α).

I Estimate ψ via WOLS of Y on covariates in blip and
treatment-free models, with weights
w = |A− P(A = 1|X ; α̂)|.



Identifying the best treatment regime

I Suppose the true outcome model is:

E [Y |X ,A;β, ψ] = β0 + β1BMI + β2BMI2 + A(ψ0 + ψ1BMI)

I But we propose:

E [Y |X ,A;β, ψ] = β0 + β1BMI + A(ψ0 + ψ1BMI)

I A weighted regression with weights w = |A− P(A = 1|X ; α̂)|
will still yield consistent estimators of ψ0, ψ1.
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Multi-stage recursion

In the multi-stage setting we conduct a single-stage analysis at
each stage by forming pesudo-outcomes:

Ỹj = Y +
J∑

k=j+1

[γk(Xk ,A
opt
k ; ψ̂k)− γk(Xk ,Ak ; ψ̂k)]

Ỹj is the expected outcome assuming optimal treatment from
stage j + 1 onwards.

We plug Ỹj into our dWOLS procedure and proceed similarly.
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Measurement Error

Assume: classical additive measurement error:

Observed = True + Error

W = X + U

I U ∼ N(0, σ2u)

I Non-differential: Y ⊥W |X

Assume replicate measurements available on at least some patients.



Questions of interest

Three parts of the precision medicine puzzle:

I Estimation (and double robustness):
E [Y |X ,A;β, ψ] = β0 + β1BMI + β2BMI2 + A(ψ0 + ψ1BMI)

I Recursion: how do we form pseudo-outcomes?

I Future treatment: “Prescribe treatment if ψ0 + ψ1X > 0”



Regression Calibration

Simple correction method: Regression Calibration.

Principle:

1. Use additional data to estimate E [X |W ,A] = Xrc .

2. Replace X with Xrc and carry out a standard analysis.

3. Adjust the resulting standard errors to account for the
estimation in step 1.



Identifying the best treatment regime

I Suppose the true outcome model is:

E [Y |·] = β0 + β1X + β2X
2 + A(ψ0 + ψ1X )

I If we have RC estimates Xrc then we could fit

E [Y |·] = β0 + β1Xrc + β2X
2
rc + A(ψ0 + ψ1Xrc)

I But we might mis-specify the model as

E [Y |·] = β0 + β1Xrc + A(ψ0 + ψ1Xrc)

I A depends on W . Establish (approximate) covariate balance
in Xrc by regressing A on Xrc .
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Example (via simulation)

Outcome model

E [Y |X ,A;β, ψ] = β0 + β1X + β2X
2 + A(−1 + X )

So rule is “A = 1 is −1 + X > 0” (or X > 1).

A naive analysis returned the rule “A = 1 if X > 2”



“Isn’t this just a prediction problem?”

Various scenarios:

I Observed: W ; Future: W

I Observed: W ; Future: X

I Observed: X ; Future: W

I Observed: X ; Future: X



“Isn’t this just a prediction problem?”

Various scenarios:

I Observed: W ; Future: W

I Observed: W ; Future: X

I Observed: X ; Future: W

I Observed: X ; Future: X ← we’ve only studied this.

Question: is it worth obtaining replicates, validation data, etc. for
future patients?



Future treatment

After estimating ψ, have “Aopt = 1 if ψ̂0 + ψ̂1X > 0”

Suppose “Aopt = 1 if X > τ” (or vice-versa) for ‘threshold’ τ

We observe W = X + U

Questions of practical interest:

P(X < τ |W = w > τ) P(X > τ |W = w < τ)

(e.g., if observed BMI = 31, the probability true BMI < 30)



Future treatment

In some settings, results fairly intuitive:
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Future treatment

In others, perhaps more of a surprise (to some):
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Recursion

Recall the multi-stage case requires the computation of
pseudo-outcomes:

Ỹj = Y +
J∑

k=j+1

[γk(Xk ,A
opt
k ; ψ̂k)− γk(Xk ,Ak ; ψ̂k)].

Question: What happens if we use Wk or Xrc instead of Xk? And
what should we do about it?
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future treatment.



Recursion

Recall the multi-stage case requires the computation of
pseudo-outcomes:

Ỹj = Y +
J∑

k=j+1

[γk(Xk ,A
opt
k ; ψ̂k)− γk(Xk ,Ak ; ψ̂k)].

The problem: our pseudo-outcomes Ỹj will not be independent of
future treatment.

One (possible) solution: if we have replicates Wj1,Wj2, with Aj

based on Wj1, then form pseudo-outcoms based on Wj2.



Summary/Future Work

So far:

I Measurement error poses unique challenges in the precision
medicine setting.

I Biased/incorrect treatment rules.

I Theoretical issues (double robustness, recursion).

I Consequences for future treatments tailored on error-prone
observations.



Summary/Future Work

So far:

I Measurement error poses unique challenges in the precision
medicine setting.

I Biased/incorrect treatment rules.

I Theoretical issues (double robustness, recursion).

I Consequences for future treatments tailored on error-prone
observations.

Moving forward:

I Other correction methods (SIMEX, conditional score, etc.).

I New methodological work specific to DTR/precision
framework.

I Diagnostics for extant analyses/datasets.
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