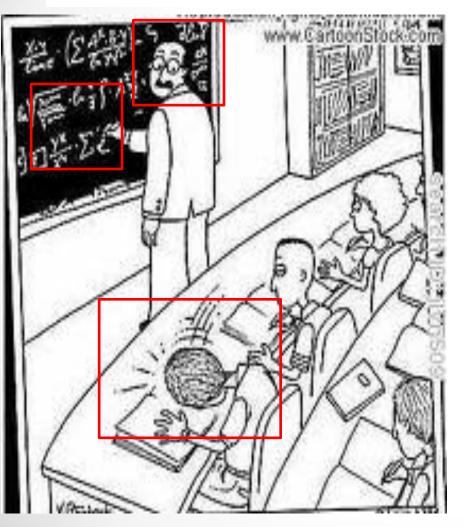
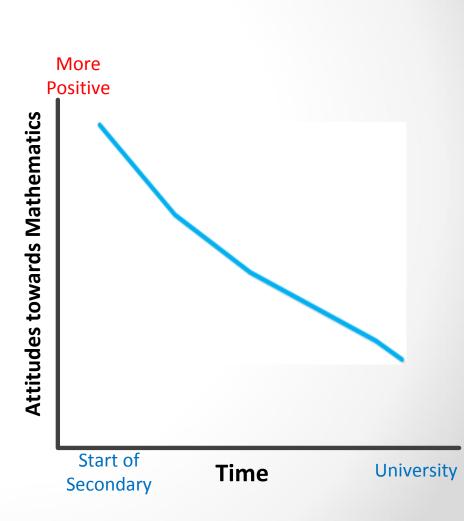
Establishing measurement invariance across time within an accelerated longitudinal design

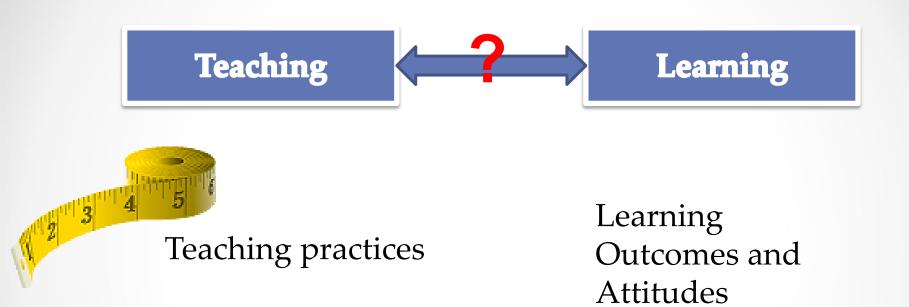
Maria Pampaka The University of Manchester, UK maria.pampaka@manchester.ac.uk


Overview

- Introducing the (educational) problem
- Introducing the project
- Introducing the analytical/methodological framework
- Methodological and Analytical Challenges
- A measurement approach to validation


 With emphasis on measurement invariance
- Statistical modelling of repeated measures (of dispositions)
- Concluding/Discussion Points

The problem... Declining students' mathematics dispositions/attitudes

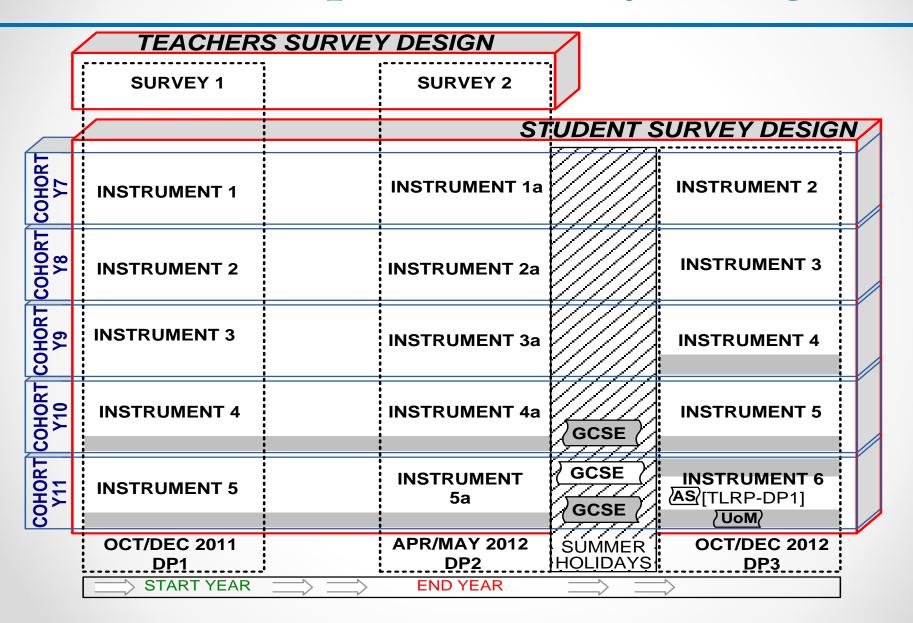

The main actors

Recent evidence ...

A research problem / question...

What is the association between teaching styles/practices in mathematics with variables relevant to students' mathematical dispositions /attitudes?

The project: TeLePriSM


Teaching and Learning Practices in Secondary Mathematics

ESRC funded study in UK (2011-2014) (<u>www.teleprism.com</u>)

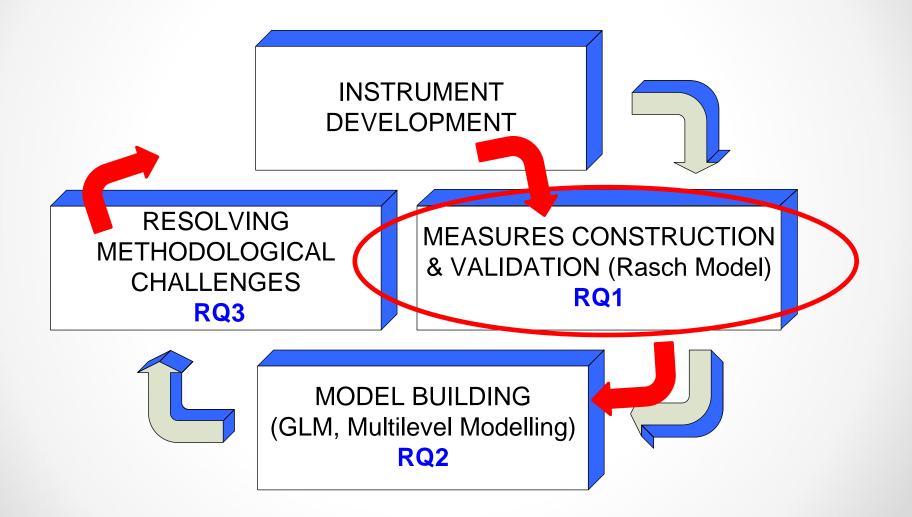
Aim: To map secondary students' learning outcomes and choices, including dispositions and attitudes, together with the teaching they are exposed to.

- Surveys for students from Years 7 to 11 (3 times) and also for their mathematics teacher (twice).
- Case studies in a small number of schools with lesson observations and interviews with students and teachers.
- Note: UK secondary compulsory education Year 7 (age 11) to Year 11 (age ~16, GCSE exams)

The Teleprism Survey Design

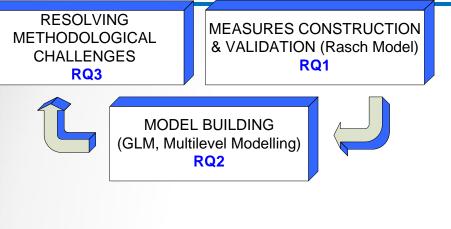
Participating Schools

Age range	Boys only	Girls only	Mixed	Total
11-16	0	2	13	15
11-18	1	5	19	25
Total	1	7	32	40


Students @ start

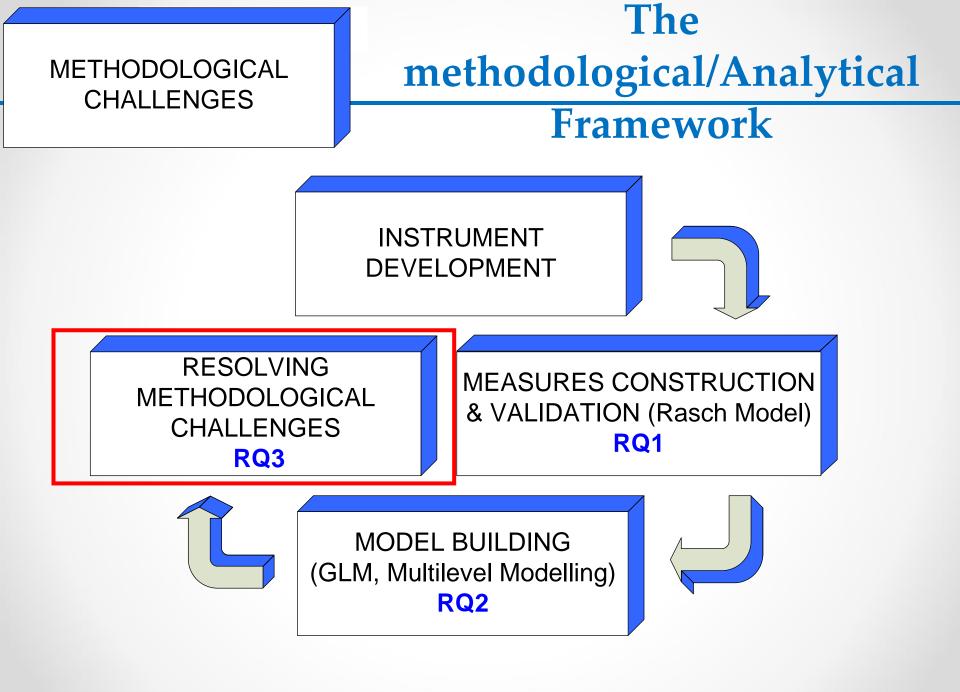
Total	13516
Year 11	1794
Year 10	2145
Year 9	2668
Year 8	3025
Year 7	3884

Charles


TeLePriSM

The methodological/Analytical Framework

INSTRUMENT DEVELOPMENT


The Research Questions

RQ1: How can we measure (i) teachers' (self-reported) pedagogic practices and (ii) students' dispositions (and other learning outcomes) to study and use mathematics? How do these measures vary across key

subgroups (e.g. year groups), background variables (e.g. class, ethnicity, gender) and institutional types (schools)?

- **RQ2:** How do background and process variables (e.g. programme type) and pedagogy predict students' learning dispositions, outcomes and decisions from Y7 to Y11?
- **RQ3:** How can cross-sectional and longitudinal models be combined in the context of hierarchical data structures and missing data?

Subjects and patterns of completion

- Unique cases of students who took part in the study: 18 157
- Unique student ids managed by schools (ethical constraints)

Challenge 1: Matching students responses across DPs to enable longitudinal analysis

Freq.	Percent	Cum.	Pattern
5830 3629 2992 2453 1298 1179 776	32.11 19.99 16.48 13.51 7.15 6.49 4.27	32.11 52.10 68.57 82.08 89.23 95.73 100.00	Only DP1 All DPs DP1 and DP2 Only DP3 Only DP2 DP1 and DP3 DP2 and DP3
18157	100.00	+	

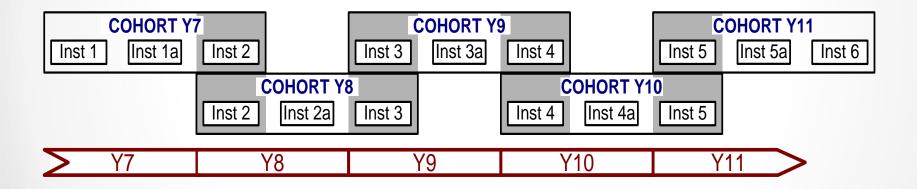
Sample per Year group/cohort

Year Grou	up @	DP1	DP2	DP3	Total
Year 7		3924	2628	883	7435
Year 8		3034	1958	2008	7500
Year 9		2710	1798	1646	6154
Year 10		2127	1531	1514	5172
Year 11		1835	768	1343	3946
Year 12				143	143
	Total	13630	8683	8037	30350

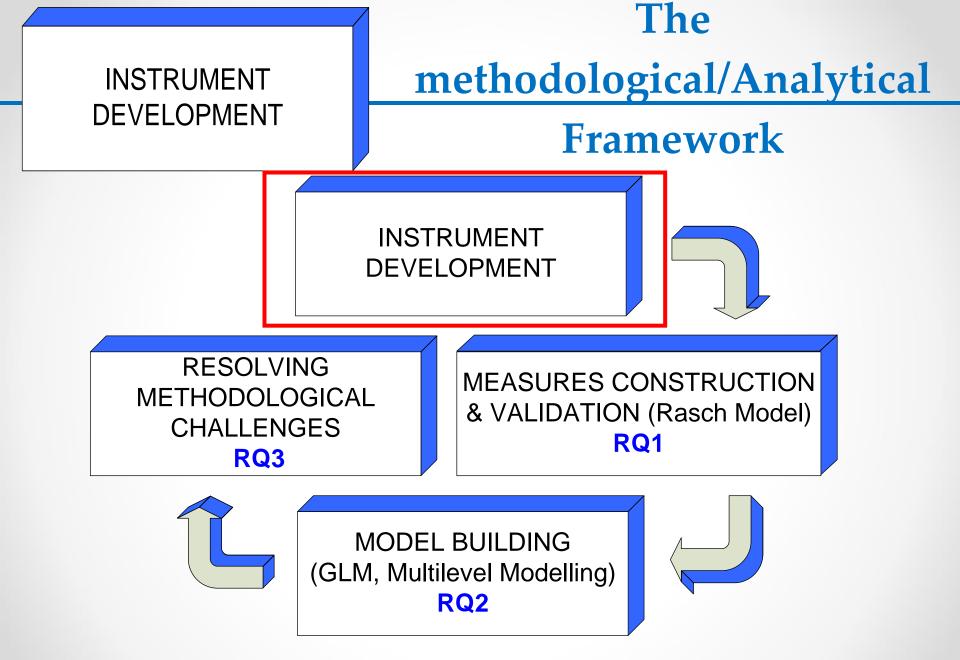
С	ohort @Start	Start Year	End Year	Start New Year	Total
	Year 7	3924	2628	2508	9060
	Year 8	3034	1958	1646	6638
	Year 9	2710	1798	1514	6022
	Year 10	2127	1531	1342	5000
	Year 11	1835	768	144	2747
	Total	13630	8683	7154	29467

Challenge 2: Attrition and dealing with missing data

Challenge 3:


- School level patterns of completion/participation
- School level attrition

School name	dp1	dp2	dp3
School 1	837	738	471
School 2	132		49
School 3	382		386
School 4	224	207	108
School 5	12		
School 6	682		
School 7	170	40	
School 8	686	584	170
School 9	186	187	
School 10	405	267	15
School 11	134	103	
School 12	182	138	125
School 13	69	58	71
School 14	1103	667	602
School 15	128	53	
School 16	748	730	553
School 17	584	585	493
School 18	179	182	202
School 19	261	216	248
School 20	764	675	512
School 21	145	137	
School 22	635	569	596
School 23	45		
School 24	353	28	191
School 25	128	109	98
School 26	136	111	202
School 27	715	615	727
School 28	154	139	
School 29	548		492
School 30	105	106	
School 31	59		
School 32	341		
School 33	150	143	153
School 34	678	627	517
School 35	123	111	85
School 36	28	29	23
School 37	283		
School 38	435	436	441
School 39	167	165	141
School 40	420		



Challenge 4: Analytical

Question: How can cross-sectional and longitudinal models be combined in the context of hierarchical data structures and missing data?

Accelerated longitudinal design

INSTRUMENT DEVELOPMENT

The Questionnaire

- About yourself and your school
 - Background information
 - Class and Teacher identifiers
 - Parental support/involvement
- Your feelings about mathematics (Maths Attitudes)
- Aspirations and intentions for after High School
- How maths is taught (Perceptions of teaching)
- Confidence in maths tasks (Maths Self-efficacy)

Example: Maths Attitudes

Part B – Your feelings about Mathematics

We would, now, like you to tell us how you feel about mathematics. How much do you agree or disagree with the following statements?

	(Please circle the appropriate number in each line)	Strongly Disagree	Disagree	Unsure	Agree	Strongly Agree
1	Mathematics is important to me.	1	2	3	4	5
2	Most people can learn to be good at maths.	1	2	3	4	5
3	My parents/carers like maths.	1	2	3	4	5
4	Maths is one of the most interesting school subjects.	1	2	3	4	5
5	Learning maths is enjoyable for me.	1	2	3	4	5
6	I have a mathematical mind.	1	2	3	4	5
7	I can get good results in maths.	1	2	3	4	5
8	I am interested in learning new things in maths.	1	2	3	4	5
9	In maths you get rewards for your effort.	1	2	3	4	5
10	Being good at maths is something you are born with.	1	2	3	4	5
11	I can learn maths even if it is hard.	1	2	3	4	5
12	I like using maths I am familiar with rather than new maths topics.	1	2	3	4	5
13	I am more worried about maths than any other subject.	1	2	3	4	5
14	I often need help with maths.	1	2	3	4	5

Example: Maths Attitudes

Stro	ngly Disag	ree 🔳 [Disagre	e Un	sure	Agree	Stror	ngly Agr	ee [[Vissing	P
21_Maths is important for my future (after school))		2987		4	457					
20_I would like to be a mathematician									422	656	
19_I would look forward to studying more mathematics after	r						3872		1967		
18_I would prefer my future studies to include a lot of maths.					•	4491			2330		4
17_I never want to take another mathematics course.						454	6		1752		
16_My parents/carers enjoy solving mathematical problems					 	863		26	90	-	
15_Compared to my classmates, I am good at maths	.				5876			31	40		
14_I often need help with maths	.					3200		341	8		
13_I am more worried about maths than any other subject.						2930		269	3	-	
2_I like using maths I am familiar with rather than new maths	5			4167			503	3			
11_I can learn maths even if it is hard.			2863			678	80				
10_Being good at maths is something you are born with							4038		1852		
9_In maths you get rewards for your effort.	.				3591		4	282			
8_I am interested in learning new things in maths			2869			5760)				
7_I can get good results in maths		31	81			6493					
6 I have a mathematical mind					4095			3583			
5 Learning maths is enjoyable for me					352	 5		3800			
4 Maths is one of the most interesting school subjects.	-					29	68	2	570		
3_My parents/carers like maths	-			528	0			3782			
2_Most people can learn to be good at maths.	-	2613				7552					
1_Mathematics is important to me	-	2270			623						
_ '	4)% 20	% 30)% 5	0% 60		 0% 80)% 9	 0% 10	_

Example: Maths Self-Efficacy

5. How confident are	you to c a	alculate t	the rang	e of a se	t of num	pers such as:
A rugby team played	7 games.					
Here is the number of	f points t	hey score	d in eacl	n game.		
3	5	8	9	12	12	16
(a) Work out the rar	nge.					
Not confident at all	Not ve	ery confid	lent	Fairly co	onfident	Very confident

"In this section, we are asking you to say how confident you would be at using mathematics to solve different problems. We don't ask you to actually solve the problems." MEASURES CONSTRUCTION & VALIDATION (Rasch Model) RQ1

Measurement

- 'Theoretically': Rasch Analysis (IRT)
 Partial Credit Model
 - Rating Scale Model
- 'In practice' the tools: Winsteps software
- Evidence from statistical indices:
 - Item Fit Statistics (to ensure unidimensional measures)
 - Differential Item Functioning (DIF)
 - Person-Item maps for hierarchy
 - Qualitative checks

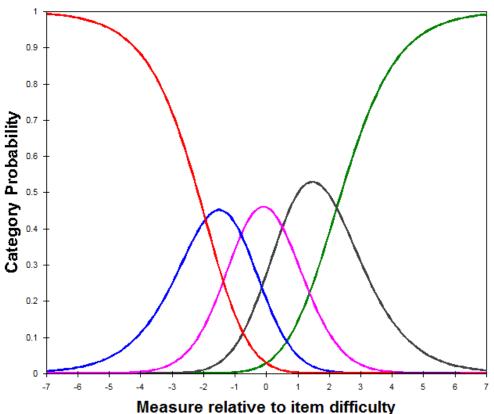
Example: A measure of maths disposition

1	Mathematics is important to me.
4	Maths is one of the most interesting school subjects.
5	Learning maths is enjoyable for me.
8	I am interested in learning new things in maths.
<mark>17</mark>	I never want to take another mathematics course. [R]
18	I would prefer my future studies to include a lot of maths.
19	I would look forward to studying more mathematics after school.
20	I would like to be a mathematician.
21	Maths is important for my future (after school)

Initial validation with all available data (long format)

Item Fit Statistics

 Item fit statistics to indicate how accurately the data fit the model, providing evidence in support (or not) of the unidimensionality assumption.

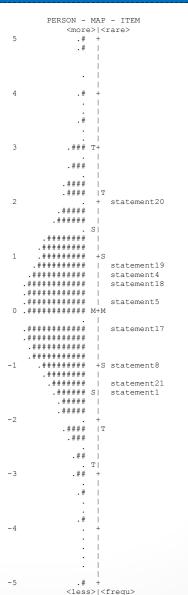

ENTRY NUMBER	TOTAL SCORE	TOTAL COUNT	MEASURE	MODEL S.E.		FIT ZSTD						MATCH EXP%	ITEM
2 3	119826 82107 91439 109298	30547 30418 30454 30395	-1.57 .59 .09 93	.01 .01 .01 .01	.85 .80	-8.8 -9.9 -9.9 -9.9	.85 .80	-9.9 -9.9 -9.9 -9.9	.78 .79	.73 .73	53.8 54.2	47.6 47.6	statement1 statement4 statement5 statement8
6 7 8	97413 82637 77153 57508 114163	30170 30182 30180 30194 30198	29 .53 .83 2.04 -1.28	.01 .01 .01	<mark>1.48</mark> .68 .77 1.18 <mark>1.53</mark>	9.9 -9.9 -9.9 9.9 9.9	.70 .76	9.9 -9.9 -9.9 9.9 9.9		.73 .73 .70	56.3	47.1 47.9 56.0	<pre>statement17 statement18 statement19 statement20 statement21 </pre>
 MEAN 9 S.D. 1		30304 139.2	.00 1.08	.01 .00	+ 1.01 .30	+ -3.2 9.3	1.02 .34	 -3.3 9.3			+ 54.2 5.0	50.1 3.1	

Item 17: I never want to take another mathematics course (reversed), Item 21: Maths is important for my future (one of the most difficult)

Category Statistics and ICCs

Category Statistics and Item Characteristic Curves (ICCs) are examined for the appropriateness of the Likert scale used and its interpretation by the respondents (i.e. communication validity).

athematics is important to me.					Agree	
athematics is important to me.	1	2	3	4	5	(
ost people can learn to be good at maths.	1	2	3	4	5	~
y parents/carers like maths.	1	2	3	4	5	bility
aths is one of the most interesting school subjects.	1	2	3	4	5	àb
arning maths is enjoyable for me.	1	2	3	4	5	robal
â	aths is one of the most interesting school subjects.	aths is one of the most interesting school subjects.	aths is one of the most interesting school subjects. 1 2	aths is one of the most interesting school subjects. 1 2 3	aths is one of the most interesting school subjects. 1 2 3 4	aths is one of the most interesting school subjects. 1 2 3 4 5



Person – Item Maps

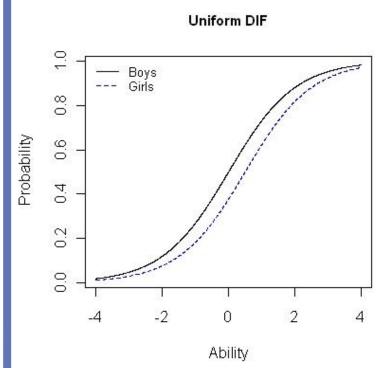
INPUT: 30741 PERSON 9 ITEM REPORTED: 30624 PERSON 9 ITEM 5 CATS WINSTEPS 3.72.3

- Person item maps and the item difficulty hierarchy provide evidence for substantive, content and external validity.
- A common scale (in logits)

→ person scores for further analysis (later)

Differential Item Functioning

Why explore DIF?

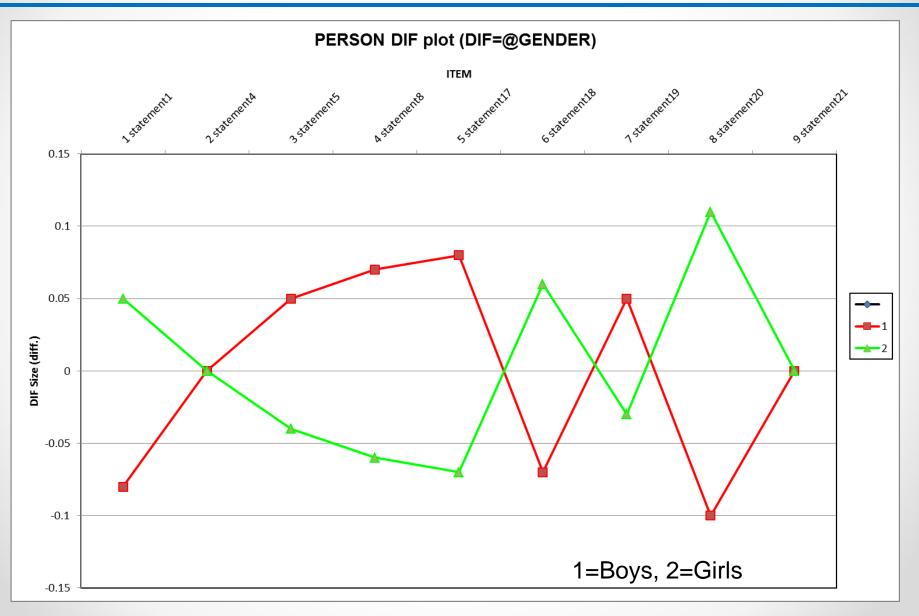

- Meaningful comparisons require that measurement equivalence holds
- Violates assumptions of Unidimensionality and Parameter invariance
- It is a potential source of bias in person measurement
- When developing new tests, items displaying DIF would normally be revised or discarded.

What is **DIF**

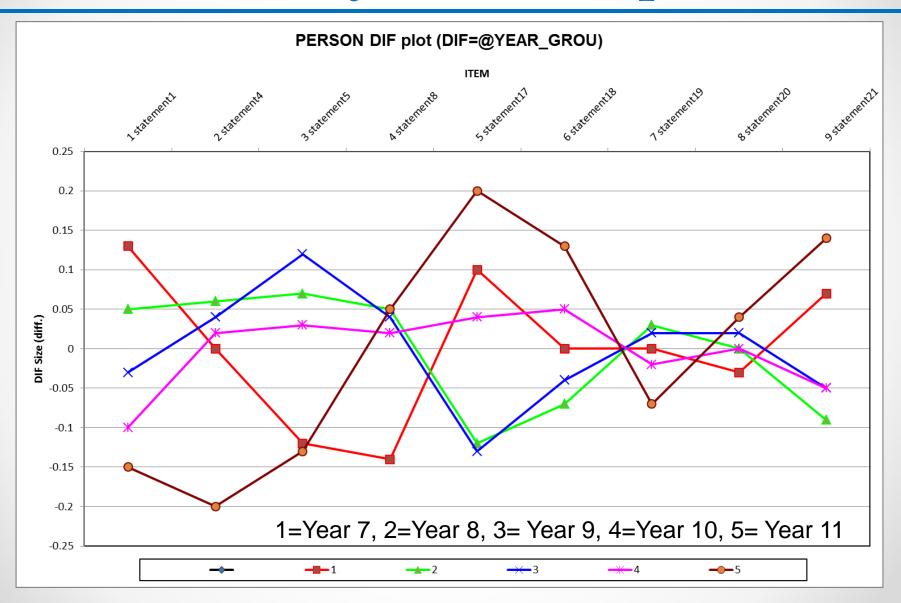
The differing probability of examinees from different subgroups but with the same 'ability' responding correctly to an item. OR

An item is said to be with "DIF" when respondents with equal ability, but from different groups, have an unequal probability of item success.

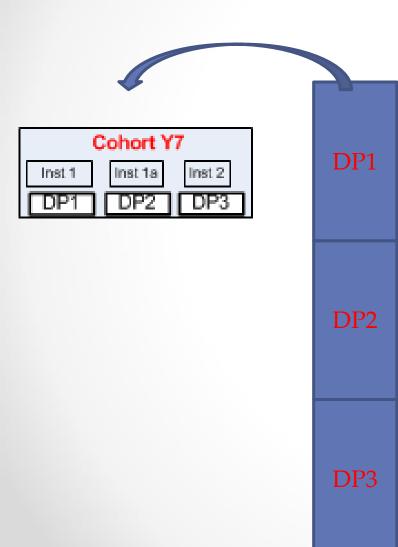
Example: Boys consistently outperform girls across ability levels for this item.



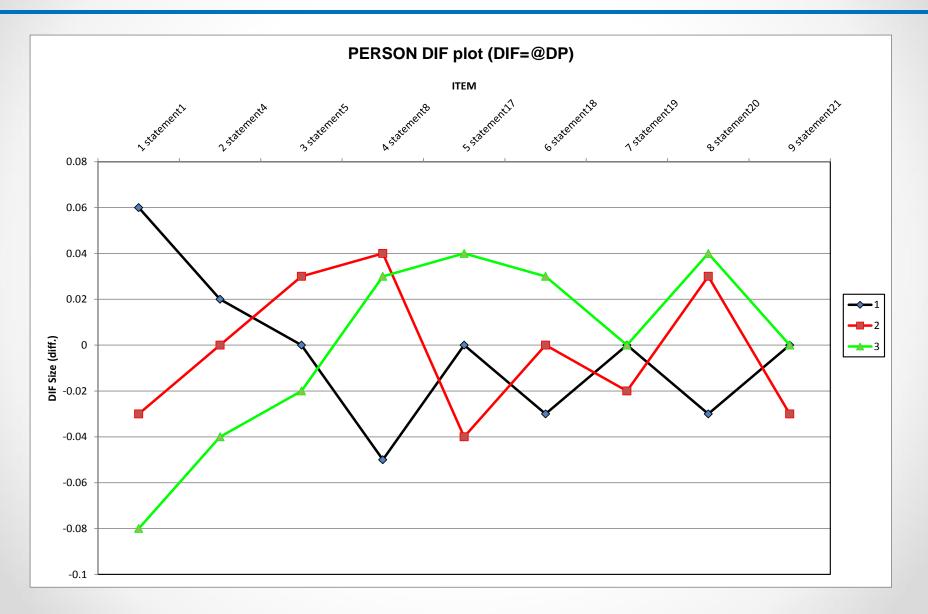
DIF examples from this study


- Differential Item Functioning (DIF) suggests potential group differentiation, which is important when an instrument is used with different groups or at different occasions
- Different groups: gender, year group, etc
- Different occasions: DP, cohort

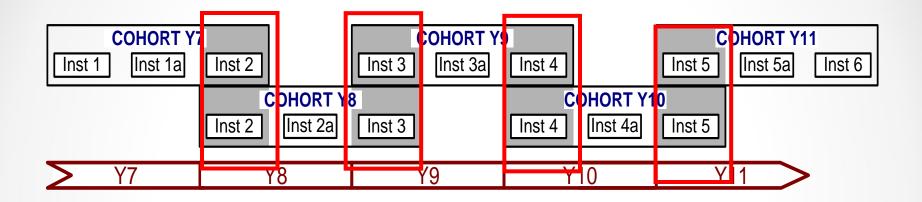
Size (up to 0.5 logit not concerning) and statistical significance of difference


DIF by gender

DIF by Year Group

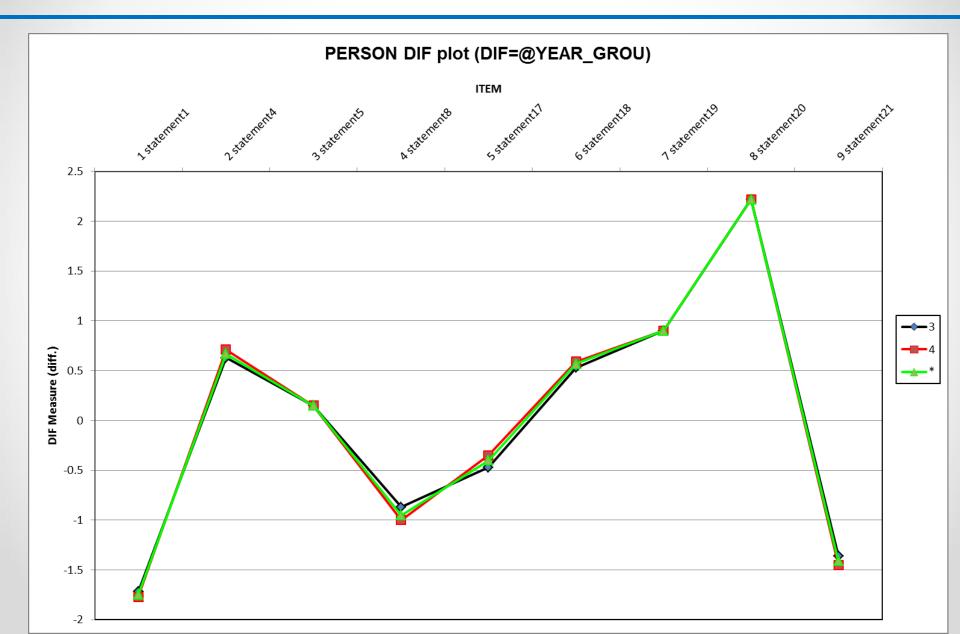


Longitudinal Analysis

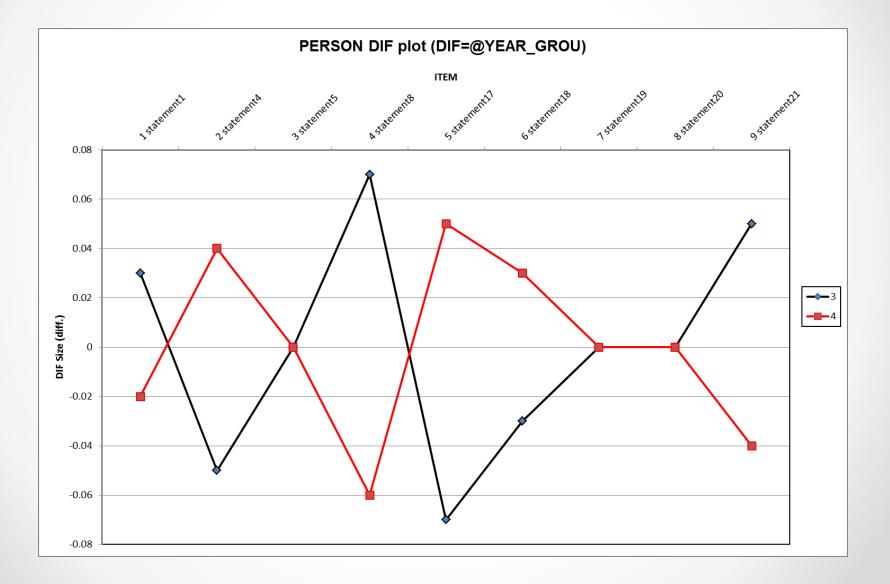


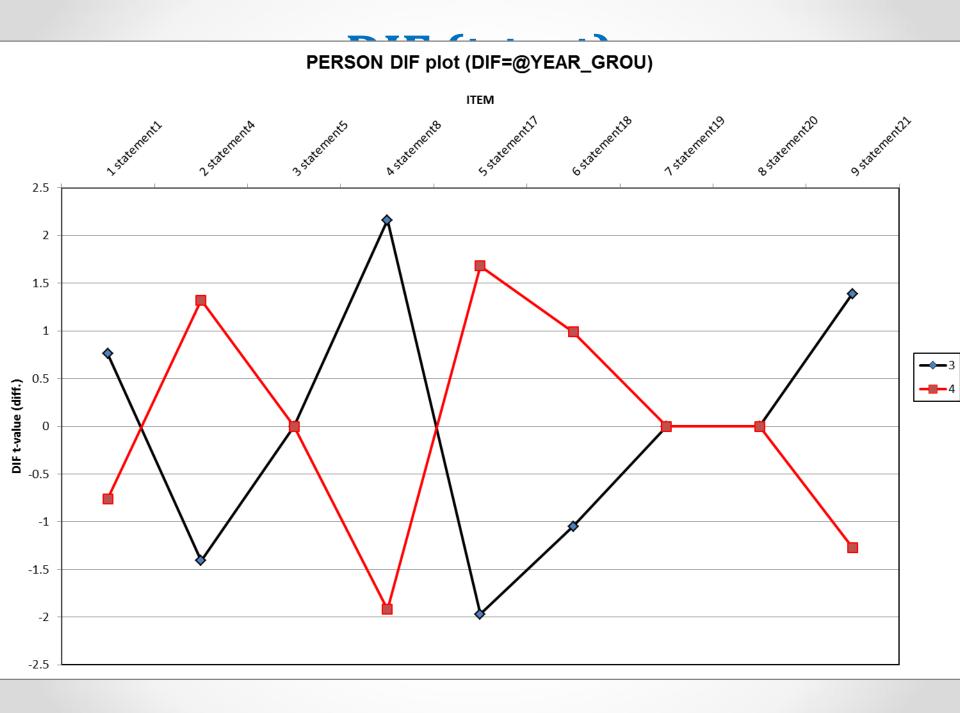
- For common instruments
- DP1,2,3 pooled together
- Analyse
- Check for DP DIF
- If OK, take measures back to longitudinal dataset

DIF by DP



Accelerated longitudinal design




Cohort @Start	Start	End Year	Start New Year	Total
Veer 7	Year			0000
Year 7	3924	2628	2508	9060
Year 8	3034	1958	1646	6638
Year 9	2710	1798	1514	6022
Year 10	2127	1531	1342	5000
Year 11	1835	768	144	2747
Total	13630	8683	7154	29467

DIF (measure)

DIF (size)

Constructed and validated measures

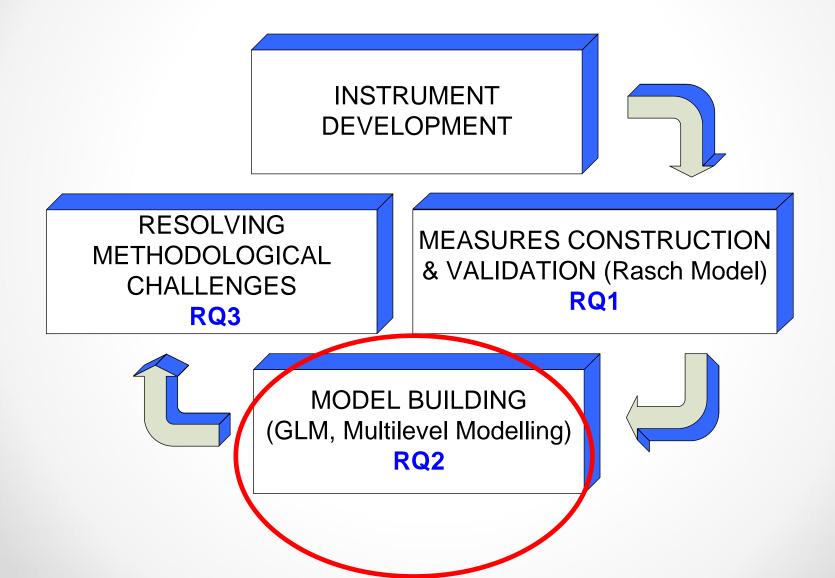
- A measure of 'perceived parental involvement/support'
- Mathematics disposition: (the higher the score the more disposed the student is towards further study or engagement with mathematics)
- Mathematics 'identity': (the higher the score the more positively/strongly the student relates or identifies with mathematics)
- Mathematics Self-efficacy
- Perceptions of teaching:
 - Teaching Variation: the higher the score on this measure the more diverse the maths lessons are (from students' perspective).
 - Transmissionist teaching: the higher the score the more 'traditional' or teacher-centred the practices as reported by the students.

Person scores → **further analysis**

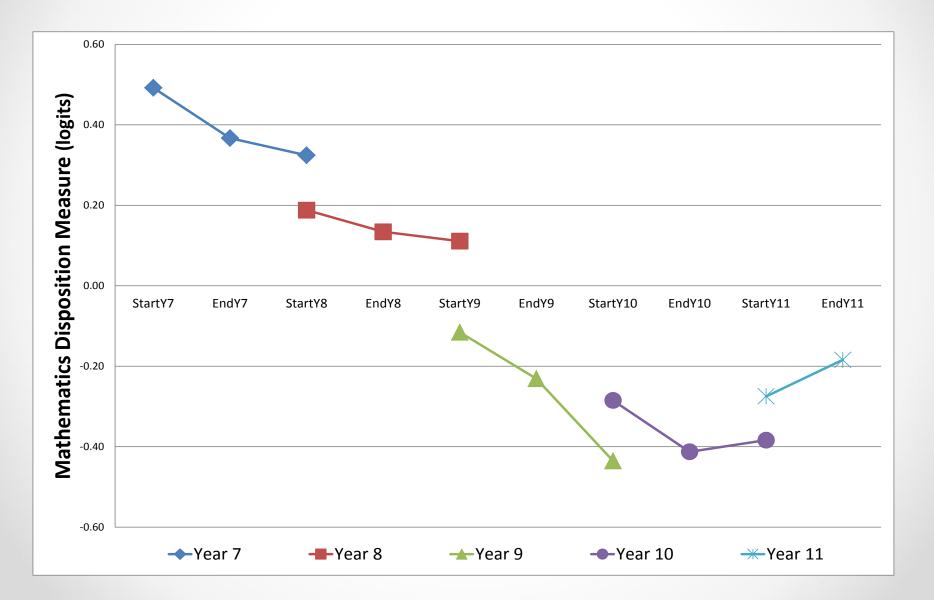
x

18-638WS.txt - Notepad

File Edit Format View Help


TABLE 18.1 cross-cohort 9-10 (17 February 2014). ZOU638WS.TXT Jun 20 8:04 2019 INPUT: 3824 PERSON 9 ITEM REPORTED: 3815 PERSON 9 ITEM 5 CATS WINSTEPS 3.72.3

PERSON: REAL SEP.: 2.57 REL.: .87 ... ITEM: REAL SEP.: 49.23 REL.: 1.00


PERSON STATISTICS: ENTRY ORDER

ENTRY	TOTAL	TOTAL		MODEL	I IN	FIT	о от	FIT	PT-MEA	SURE	EXACT	MATCH	
NUMBER	SCORE	COUNT	MEASURE						CORR.				PERSON
					+		+	+	+	+	+	+	
1	38	9	2.27		1.57		1.35	. 8		.61		59.7	
2	12	9	-3.53	.66	. 57		.44	4		.46		71.5	4
3	36	9	1.75		1.50		1.34	. 8		. 64		54.9	4
4	36	9	1.75		.55	9		8		. 64		54.9	4
5	17	9	-2.03		1.01	. 2	1.15	.4		. 62	55.6	54.9	
6	28	9	.10	.43		7	.70	6	. 64	. 69	44.4	47.1	4
7	29	9	.28	.43		-1.4		-1.3		. 68	66.7	48.7	4
8	27	9	09	.43	.91	1	1.09	.4	.00	. 69	44.4	46.6	
9	32	9	. 87	.45	1.13	.4	1.15	. 5	.87	. 67		48.6	
10	23	9	82	.43	.43	-1.5	.43	-1.4	.94	.68	66.7	48.2	4
11	13	4	15	. 64		4	.76	1		.60	25.0	47.7	4
12	34	9	1.29	.47		-1.7		-1.7		.66		48.7	4
13	33	9	1.07	.46		4		.0		.66		48.7	4
14	31	9	. 67	.44		-1.3		-1.4		.68		48.7	4
15	28	9	.10	.43		6		3		. 69		47.1	4
16	20	9	-1.39		2.49		2.17	2.0		. 66		48.5	
17	37	9	2.00		.48	-1.1		-1.2		. 62		58.3	
18	35	9	1.51		1.03	.2		1			55.6	51.8	
19	15	9	-2.52		3.15		2.52	1.9		. 58			
20	26	9	27		1.86	1 7	1.83	1.6	.56	. 69		45.9	
21	23	9	82		1.88	1 7	1.89	1.7	.10	.68		48.2	4
21	29	9	.28		.85		.89	1		. 68		48.7	4
23	29	9	63		1.30		1.29	1		. 69		48.4	4
23	24	9	.28		1.50	-3.3		-3.3		. 68		48.7	4
24	29	9			.68	-5.5						48.7	4
			.10					6		. 69			
26	28	9	.10		2.36		2.15	2.1		. 69		47.1	4
27	36	9	1.75	.49		-1.2		7		. 64	66.7	54.9	4
28	36	9	1.75	.49		5		4		. 64	66.7	54.9	4
29	35	9	1.51		2.13		1.77	1.5		.65	55.6	51.8	4
30	22	8	37		.63	7	.63	<u>7</u>	. 69	. 69	50.0	46.0	4
31	26	9	27	.43	1.20		1.24	• 7	.54	. 69		45.9	4
32	25	9	45		1.11		1.06	.3		. 69		47.9	4
33	32	9	. 87	.45	.72	5	.82	3	.43	. 67	66.7	48.6	4

The methodological/Analytical Framework

Mean Maths disposition, by cohort

Relevant methodological Literature suggestions

- Longitudinal analysis under the multilevel framework
 - Growth curve (latent trajectory) models
 - Dynamic (autoregressive) models
 - Fixed, random, mixed effects models ...
- For accelerated designs
 - "the growth curve is estimated on a combination of longitudinal and cross-sectional information" (Hox, 2010, p. 110)
 - Suggested Procedure: each cohort analysed separately and then combined (formulation and testing of 'linkage model')
- Further Complications
 - Most examples/applications for 2-level "occasion within subject"
 - Here multilevel in schools (and classes) as well
 - No class information at DP3 (new academic year)

Preliminary Modelling

- 2-level longitudinal models (level 1: DP, level 2: student)

 xtreg (stata)
 - xtmixed (stata)
 - runmlwin (mlwin within stata)

Both by cohort separately and combined

- 3-level growth curve models (DP, students in schools)
 o Separate cohorts
 - combined
- New variable for linkage: age

		уe	ar_cohort			
age	1	2	3	4	5	Total
11	3,924	0	0	0	0	3,924
11.5	2,628	0	0	0	0	2,628
12	2,508	3,034	0	0	0	5,542
12.5	0	1,958	0	0	0	1,958
13	0	1,646	2,710	0	0	4,356
13.5	0	0	1,798	0	0	1,798
14	0	0	1,514	2,127	0	3,641
14.5	0	0	0	1,531	0	1,531
15	0	0	0	1,342	1,835	3,177
15.5	0	0	0	0	768	768
16	0	0	0	0	144	144
Total	9,060	6,638	6,022	5,000	2,747	29,467

- Treat cohorts as dummy variables
- Estimate fixed effects in the form of interactions with cohort (Plewis, 2009)

Number of obs

28130

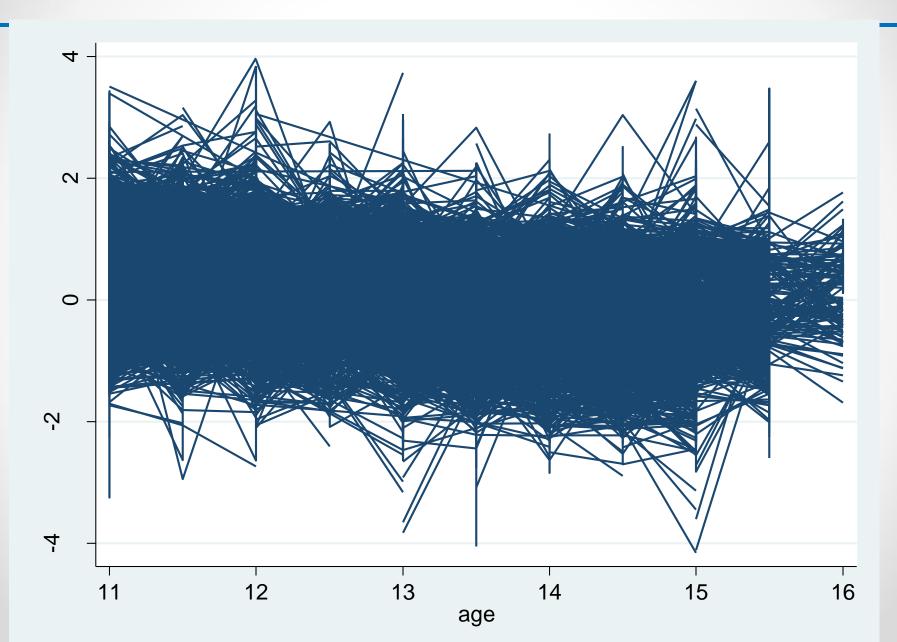
=

	No. of	Obser	vations p	per Grou	р		
Level Variabl	e Groups	Minimum	Avera	ge Ma	ximum		
school i	.d 40	12	703	. 3	2145		
unique_use~	r 16614	1	1	.7	3		
Run time (secc Number of iter Log likelihood Deviance	ations = = -449	4.53 3 995.602 991.203					
mathsdispositi	on Coef.	Std. Err.	Z	₽> z	[95%	Conf.	Interval
cons	.2654768	.1892702	1.40	0.161	105	4859	.636439
age	1088022	.0160247	-6.79	0.000	140	2099	077394
_Iyear_coh~2	021217	.0310303	-0.68	0.494	082	0352	.039601
_Iyear_coh~3	1110374	.0415801	-2.67	0.008	192	5328	02954
_Iyear_coh~4	0480477	.0557697	-0.86	0.389	157	3544	.06125
Ivear coh~5	00816	.0693778	-0.12	0.906	14	4138	.127817
_Igender_2	233826	.02014	-11.61	0.000	273	2996	194352
Iability~2	.7430826	.0352745	21.07	0.000	.673	9458	.812219
Iability ~3	1.426746	.0353747	40.33	0.000	1.35	7412	1.49607
Iability ~4	2.31953	.0385862	60.11	0.000	2.24	3902	2.39515
parentalsu~t	.1588398	.0076943	20.64	0.000	.143	7592	.173920
TeachingVa~n	.3169403	.0089465	35.43	0.000	.299	4055	.33447
	1162968	.0189731	-6.13	0.000	153	4833	079110

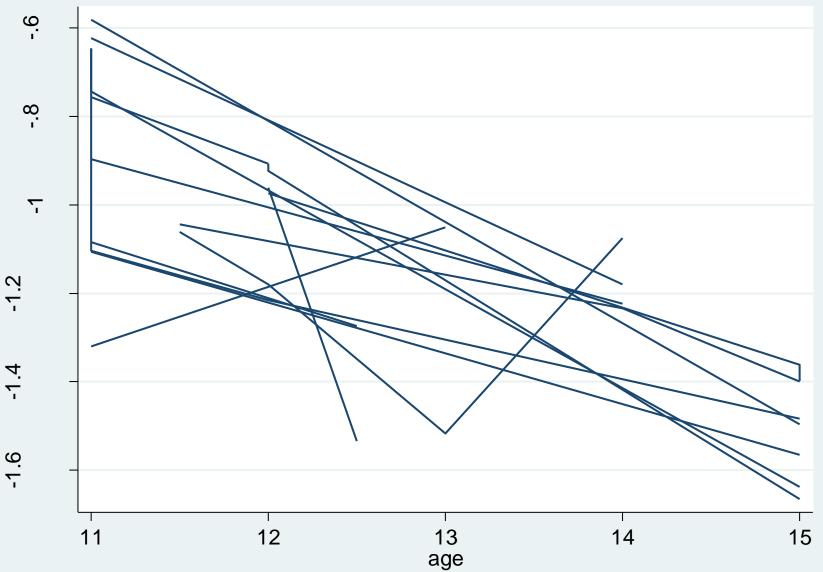
Random-effects Parameters	Estimate	Std. Err.	[95% Conf.	Interval]
Level 3: school_id var(cons)	.0501309	.0126577	.0253222	.0749396
Level 2: unique_user_number var(cons)	.7319179	.0156322	.7012793	.7625565
Level 1: dp var(cons)	.8630708	.0110958	.8413234	.8848182

• Level 3 ICC (school): 0.0305

The correlation in disposition between schoolmates is 0.03 OR 3% of the variation in dispositions lies between schools


• Level 2 ICC

(student): 0.4449


• Level 1 ICC

```
(time): 0.5246
```

'Growth curves' of students

'Growth curves' of schools

Concluding points / Further work

- Demonstration of an approach to measurement invariance (across time)
- Evidence of declining dispositions
- Effect of teaching style on decline (and other variables)
- Possible to link and model progression from Year 7 to 11
- Improve and test the models (age*cohort interactions, etc)
- Consider additional complexity (levels and variables):
 - Class level (for first year: DP1 and DP2) and teacher background and teaching style
 - Cross-level interactions ?
 - More student background variables
 - School level variables
- Non –linear growth?

Person scores → further analysis Consider errors?

🗍 18-638WS.txt - Notepad									
<u>F</u> ile <u>E</u> dit F <u>o</u> rmat <u>V</u> iew <u>H</u> elp									
TABLE 18.1 cross-cohort 9-10 (17 February 2014). ZOU638WS.TXT Jun 20 8:04 2019 INPUT: 3824 PERSON 9 ITEM REPORTED: 3815 PERSON 9 ITEM 5 CATS WINSTEPS 3.72.3									
PERSON: REAL SEP.: 2.57 REL.: .87 ITEM: REAL SEP.: 49.23 REL.: 1.00									
PERSON STATISTICS: ENTRY ORDER									
ENTRY TOTAL TOTAL	T MEASURE S.E.	INFIT OUTFIT PT-MEAS		PERSON					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{bmatrix} 57 & 1.1 & 1.35 & .8 & .67 \\ 57 &6 & .44 &4 & .62 \\ 50 & 1.1 & 1.34 & .8 & .64 \\ 55 &9 & .61 &8 & .66 \\ 01 & .2 & 1.15 & .4 & .48 \\ 65 &7 & .70 &6 & .64 \\ 46 & -1.4 & .47 & -1.3 & .80 \\ 91 &1 & 1.09 & .4 & .00 \\ 13 & .4 & 1.15 & .5 & .87 \\ 43 & -1.5 & .43 & -1.4 & .94 \\ 65 &4 & .76 &1 & .90 \\ 34 & -1.7 & .36 & -1.7 & .90 \\ 76 &4 & .92 & .0 & .34 \\ 48 & -1.3 & .45 & -1.4 & .70 \\ 69 &6 & .79 &3 & .52 \\ 48 & -1.1 & .46 & -1.2 & .86 \\ 03 & .2 & .89 &1 & .85 \\ 15 & 2.9 & 2.52 & 1.9 &02 \\ 86 & 1.7 & 1.83 & 1.6 & .56 \\ 88 & 1.7 & 1.89 & 1.7 & .10 \\ 85 &2 & .89 &1 & .46 \\ 30 & .8 & 1.29 & .8 & .54 \\ 11 & -3.3 & .11 & -3.3 & .94 \\ 68 &6 & .69 &6 & .75 \\ 26 & 2.4 & 2.15 & 2.1 & .65 \\ 47 & -1.2 & .65 &7 & .52 \\ 71 &5 & .76 &4 & .00 \\ 13 & 2.0 & 1.77 & 1.5 & .46 \\ 63 &7 & .63 &7 & .69 \\ \end{bmatrix} $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4 4 <td< td=""></td<>					

Thank you!

Questions? (or Answers?) Suggestions welcome!

Acknowledgements and links

ESRC grant RES-061-25-0538 Lawrence Wo for data management Patricio Troncoso-ruiz for preliminary longitudinal analysis

Project website: www.teleprism.com

TEAM Project investigator Research Associates Associate Research students Mentors

Maria Pampaka Lawrence Wo, Afroditi Kalambouka Sophina Qasim, David Swanson, Patricio Troncoso-Ruiz Prof Julian Williams, Prof Ian Plewis

Some References and related publications

- Hox, J. J. (2010). *Multilevel analysis: Techniques and applications, 2nd ed*. New York, NY, US: Routledge/Taylor & Francis Group.
- Pampaka, M., Pepin, B., & Sikko, S. A. (2016). Supporting or alienating students during their transition to Higher Education: Mathematically relevant trajectories in the contexts of England and Norway. *International Journal of Educational Research*, 79, 240-257. doi:http://doi.org/10.1016/j.ijer.2016.06.008
- Pampaka, M., & Troncoso, P. (2014). *Modelling students' progression in secondary education with the combination of separate cohorts of repeated measurements* Paper presented at the VI European Congress of Methodology, Utrecht.
- Pampaka, M., & Williams, J. (2016). Mathematics teachers' and students' perceptions of transmissionist teaching and its association with students' dispositions. *Teaching Mathematics and its Applications: An International Journal of the IMA, 35*(3), 118-130. doi:10.1093/teamat/hrw007
- Pampaka, M., & Wo, L. (2014). *Revisiting Mathematical Attitudes of students in Secondary Education. In Liljedahl, P., Oesterle, S., Nicol, C., & Allan, D. (Eds.) Proceedings of the Joint Meeting of PME 38 and PME-NA 36, Vol. 4, pp. 385-392.* Paper presented at the The Joint Meeting of PME 38 and PME-NA 36, Canada, Vancouver.
- Plewis, I. (2009). Statistical Modelling for Structured Longitudinal Designs. In P. Lynn (Ed.), *Methodology of Longitudinal Surveys*. Chichester: Wiley.