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Motivating example: Longitudinal studies of PA

ñ PA has been linked to many health outcomes (cancer,
diabetes, cardiovascular disease, obesity, quality of life)

ñ PA is characterized by both short-term (e.g., month to
month) and long-term (over years) changes

ñ To take account of dynamic nature of PA in the analysis of
its relationship with health outcomes, it is important to carry
out longitudinal studies

ñ No less important is evaluation of measurement error in
assessing PA with different instruments



Statistical analysis of longitudinal studies

ñ Mixed effects models have become one of the major
approaches to the analysis of longitudinal studies

ñThose models include both fixed random effectsand 
  are population level functions of covariates fixed effects
  subject-specific realizations of latent random effects are 

random variables that account for between-subject
heterogeneity and induce within-subject correlation structure



Mixed effects models

ñ : random effects are independent ofTraditional assumption
covariates

ñ If both the exposure and outcome vary with time, it is
natural to specify mixed effects models for both

ñ If heterogeneity in temporal trajectories is related to
unknown subject-level , random effects in thoseconfounders
models will be correlated inducing correlation between
random effects in the outcome model and the exposure



Mixed effects models

ñ ependence of random effects on exposure  leads toD always
three different effects:

  of the exposure for within-subject individual level  effect( )
a particular subject on this subject's mean outcome

  of the mean (over time) exposure between-subject effect
on the mean outcome in the population

  of the exposure on marginal population-average  effect( )
the contemporaneous mean outcome in the population

ñ Ignoring existing dependence leads to biased estimates of all
three effects



Simple example: linear mixed model (LMM)
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Linear mixed model

ñ Consider linear regression
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  Linear mixed model

ñ Reparameterized LMM includes fixed between ( ) and"F

within ( ) effects of two covariates (  & ) and an" $[ B3 B34?
independent random effect (C3
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ñ Marginal effect is given by the weighted average of within-
and between-subject effects

" " "Q [ F 
œ 

5

5 5 5 5

5#
B B

? ?B B
# ## #

B B

?
#

$

$ $



 Linear mixed model
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Mixed effects model with error-prone exposure

ñ B Theorem: in the naive model with error-prone exposure ,‡
34

induced random effects are  correlated with exposurealways

ñ Proof (main idea):
 Bre-write naive model as true model where exposure  is34
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Longitudinal measurement error model

ñ For continuous exposure on an appropriate scale,
longitudinal measurement error model may be specified as
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Effects of exposure measurement error

ñ Impact of ME structure depends on the effect of interest:
 true exposure related slope  allbiases (often exaggerates)
three effects
 subject-specific bias  change within-subject effect,does not
but  between-subject and marginal effectsattenuates
 within-subject random error  within-subject andattenuates
marginal effects, but  change between-subject effectdoes not



Interactive Diet and Activity Tracking in AARP ( )IDATA

ñ  is a validation study of 1100 participants (550 menIDATA
and 550 women), aged 50-74, with a variety of diet, PA, and
biomarker measurements over a course of one year

ñ Focus here: evaluation of ME structure in assessing daily
MET-hours (kcal/kg/day) with
 CHAMPS questionnaire over the previous month
 ACT24 web-based 24-hour recall
 ActiGraph GTX3 accelerometer (first 4 full days out of 7)



IDATA Study

ñ Time period in time-varying PA exposure: one month
ñ On the log scale, unbiased biomarker for within-period

MET-hours: doubly labeled water (DLW) divided by weight
ñ By design, participants had 6 ACT24, 2 ActiGraph,
 2 CHAMPS, 2 DLW, and 3 BMI measurements evenly

spread over one year
ñ Vector  included baseline BMI, age, and calendar monthsD3







Discussion (1)

ñ All 3 PA instruments involve flattened slope, person-
specific biases, and within-person random errors

ñ Flattening of slope is the largest in CHAMPS and smallest
in ActiGraph accelerometer

ñ Person-specific bias is the largest in ACT24 and smallest in
ActiGraph

ñ Within-person random errors are about 3 times larger in
ACT24 and 20% larger in CHAMPS compared toµ
ActiGraph accelerometer



Discussion (2)

ñ Bias due to ME is the smallest for estimating between-
person and largest for within-person effects in all 3
instruments

ñ Results show a definite advantage of using ActiGraph
accelerometer vs self-report ACT24 or CHAMPS for
estimating all three effects




