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What’s the problem?

• Failure to adjust for Measurement error(ME) in covariates where we have 
‘unreliable’ measures can lead to serious parameter biases.

• Several procedures for handling ME have been available:
• Fuller using moment based estimators
• SIMEX using successive approximations
• Bayesian joint models related to missing data modelling

• All these assume knowledge of the distribution of the measurement errors 
(e.g., normally distributed measurement errors with known variance).

• Little guidance on how to estimate the distributions.
• Often a special problem for longitudinal data where the use of conditional 

models with errors in predictors is common.
• Will illustrate with educational data
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A basic ME model

• Consider the simple regression MOI (we elaborate later)
• 𝑌 = 𝛼 + 𝛽𝑋 + 𝑒, 𝑒~𝑁 0, 𝜎𝑒

2

• If there is random measurement error m:
• we write the observed covariate 𝑥 = 𝑋 +𝑚, 𝑚~𝑁(0, 𝜎𝑚

2 )

• 𝑐𝑜𝑣 𝑚, 𝑋 = 0
• and possibly the observed response 𝑦 = 𝑌 + 𝛿 𝛿~𝑁(0, 𝜎𝛿

2)
• Note ‘Berkson’ model assumes 𝑐𝑜𝑣 𝑚, 𝑋 = 𝜎𝑚

2 with appropriate modifications.

• The reliability 𝑅 = ൗ𝑣𝑎𝑟(𝑋)
𝑣𝑎𝑟(𝑥)

• Estimates of R often not available
• Software not easily available even if R known
• Awareness of the problem limited

• If 𝑥 used instead of 𝑋 the regression coefficient 𝛽 will be downwardly 
biased in absolute value, by a factor R, i.e. we will estimate 𝑅𝛽.
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An algorithm to handle ME for known R

• Details in Goldstein et al (2014). We write the full model with 
independent normal residuals, and 𝑥1 are covariates with error.
𝑌 = 𝛼 + 𝛽𝑋1 + 𝑒,
𝑋1 = 𝑋2𝛼 + γ2 Note that we need this line
𝑥1 = 𝑋1 + 𝛾1

• 𝑋2 are measured without error. 𝑋 = 𝑋1, 𝑋2 . R is assumed known.
• We use MCMC Metropolis steps to sample parameters. 

• Incidentally we can also handle missing values using imputation; ME is a kind of 
missing value. 

• At each step the posterior is computed from the joint likelihood (product) from 
the second line and the MOI (first line).

• This results in a single chain for MOI that can be used for inference in the usual 
fashion.

• Note especially that we can directly incorporate interactions involving 𝑋1
variables (not available with moment type estimators) and extend to repeated 
measures and other multilevel structures. 
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Estimating R

• Assume no replication possible as with educational tests or opinion scales.

• Internal consistency estimates ( e.g. coefficient alpha)
• For simplicity consider binary (0,1) responses (𝑝𝑖𝑗) for individual 𝑖 and item j, 

summed to form a score to be treated as a covariate, 𝑥𝑖 = σ𝑗=1
𝑘 𝑝𝑖𝑗

• Suppose we divide the test items at random into two (approximately) equal groups and 
assume that for each testee (ie conditional on their characteristics – ability etc.) ∀𝑗 ≠
𝑘|𝑖, 𝑝 𝑖𝑗⊥ 𝑝𝑖𝑘 − an assumption of conditional or local independence.

• We can treat the scores from each such group as an independent replicate and hence 
obtain an estimate for the ‘half test’, between-replicate covariance. Thus for the whole 
test score, an equivalent estimate of the measurement covariance would simply be four 
times this value. 

• 𝛼 = ( Τ𝑘 (𝑘 − 1))(1 − (σ𝑗=1
𝑘 𝑃𝑗(1 − 𝑃𝑗))/𝜎𝑥

2) (1)

• where 𝑃𝑗 is the proportion of the sample with correct answers to item j and  𝜎𝑥
2 is 

observed variance of the sum score
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More on 𝛼

• Items treated as a ‘random’ sample from a universe of them

• The conditional independence assumption, however, is crucial. In the 
formula(1) we have a numerator 𝑃𝑗(1 − 𝑃𝑗) for the variance of true 
values that essentially assumes independence across items so that, if 
we add positive covariances (as might be expected), then (1) will tend 
to overestimate reliability.

• Simulations under an assumed (probit response) model confirm this.
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Simulations for 𝛼

• Generate data using a  a simple item response model

• 𝜋𝑖,2 = 𝜋𝑖,1(−∞
𝜃𝑖−𝛼2+𝑐𝜙 𝑡 𝑑𝑡) + (1 − 𝜋𝑖,1)(−∞

𝜃𝑖−𝛼2−𝑐𝜙 𝑡 𝑑𝑡))

• etc for 𝑗 > 2. For 𝑗 = 1, 𝑐 = 0. 30 item test. 
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𝝆𝟏𝟐 = 𝝆𝟐𝟑 = 𝟎. 𝟐 C=0 C=0.02

R(true) 0.81 0.59

R(𝛼) 0.82 0.88



Instrumental variable estimators
• Using previous model

𝑌 = 𝛼 + 𝛽𝑋1 + 𝑒, (1)        
𝑋1 = 𝑋2𝛼 + γ2
𝑥1 = 𝑋1 + 𝛾1

• Define an instrumental variable (IV) Z where we assume a linear model 
relating 𝑥, 𝑍 ,namely

• 𝑥𝑖 = 𝛾0 + 𝛾1𝑍𝑖 + 𝑒𝑧, 𝛾1 ≠ 0, ෞ𝑥1𝑖 = 𝛾0 + 𝛾1𝑍𝑖
• Two stage LS substitutes ෞ𝑥1𝑖 for 𝑋1 in (1) to obtain adjusted (unbiased) 

estimate of 𝛽 that is then compared with biased estimate of 𝛽 to 
calculate R.

• Note that we require 𝑍 ⊥ 𝑒 which implies  𝜌𝑍𝑌 = 𝜌𝑋𝑍𝜌𝑋𝑌.

• Note especially that the IV should be highly correlated with 𝑋1.
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IV choices

• Grouping estimators

• A commonly advocated, but unsatisfactory, IV method is the so called 
grouping procedure, Wald (1940), Bartlett (1949) , Durbin (1954).

• Rank and group 𝑥1 into 2 or more then use group membership as IV

• Only works when grouping on basis of true scores 𝑋1 or equivalently 
when measurement errors so small that their intervals around 
observed do not overlap

• Still advocated in text books, especially economics ones e.g. 
Johnston, 1972, Cameron and Trivedi, 2005.

24-Jun-19 Manchester 2019 9



IV choices ctd.
• With cross sectional data while we can often get high correlations the assumptions of 

orthogonality and the necessary correlation structures are difficult to satisfy. So:

• Using distal score as IV in longitudinal data

• Typically not correlated with ME. But needs to satisfy 𝜌𝑍𝑌 = 𝜌𝑋𝑍𝜌𝑋𝑌

• Simulation for different known R and correlations:

1
0.5 1
𝑞 0.5 1

Here 𝜌𝑍𝑌 = 𝜌𝑋𝑍𝜌𝑋𝑌 is satisfied when q = 0.25 (i.e., autoregressive structure)
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Distal IV simulation

N 𝑅X q = 𝜌ZY 50th( 𝑅2) 2.5th( 𝑅2) 97.5th( 𝑅2)

100 0.800 0.25 0.768 0.210 3.249

1000 0.800 0.25 0.794 0.630 1.072

10000 0.800 0.25 0.802 0.739 0.868

1000 0.700 0.25 0.709 0.542 0.949

1000 0.900 0.25 0.902 0.701 1.235

1000 0.800 0.20 0.870 0.646 1.342

1000 0.800 0.30 0.583 0.452 0.74224-Jun-19 Manchester 2019 11



IV example
• Australian school tests (NAPLAN) : years 3,5,7 for 2011 (year 3) cohort.

• Estimating year 5 Maths subtest score reliabilities.
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Table 3. Reliability estimates comparing Cronbach’s alpha with observed year 5 patterns and IV 

methods based upon year 3 scores as distal in the regression of year 7 on year 5 scores.

Algebra, 

Function & 

Pattern (4 

items)

Measurement, 

Chance and 

Data (13 items)

Number (13 

items)

Space (10 

items)

Numeracy 

Total            

(40 items)

Year 5 IV 0.403 0.648 0.625 0.528 0.793 

Year 5 coefficient 

alpha

0.449 0.678 0.681 0.576 0.864



Choosing IV variables

Reliability estimates for measurement test score (13 items) at 5 years using 

different combinations of IV variables. All models are additive linear regression 

models.

IV variables predicting year 5 measure score Reliability estimate

Year 3 measurement 0.648

Year 9 measurement 0.585

Year 3 total numeracy 0.722

Year 3 total numeracy + year 3 measurement 0.645

Year 3 total numeracy + year 9 measurement 0.616

Year 3 measurement + year 9 measurement 0.655
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Some tentative conclusions

• If we use a test score as IV that is measured at the same time as the target variable we find that 
the estimate of reliability tends to increase. 

• In other words it suggests the observed test score contains less measurement error than using a 
distal test score,  so we can infer that we are not fully correcting for ME.

• Grouping estimators should not be used.

• Simulations that allow positive correlations between successive items show that 𝛼 will be biased 
upwards.

• Sensitivity analysis should be carried out with a range of reliability values.

• More empirical work needed.
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Thank you for listening


