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Conclusions

If model converges, Multilevel LST = Single-
level LST.

Single-level LST is time consuming and can 
fail when the number of measurements 
increases.

The TSO seems robust and should be used to study

states and traits in intensive longitudinal data.
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Conceptual Conclusions

ML-(V)AR with measurement error (Schuurman 
& Hamaker, 2018) ≈ TSO model with one
indicator.

These models can be easily extended within the
DSEM framework.
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