

Using Latent State-Trait Theory to Analyze Intensive Longitudinal Data

By Sebastian Castro-Alvarez, dr. Jorge Tendeiro, prof. dr. Rob Meijer, dr. Laura F. Bringmann,

Using Latent State-Trait Theory to Analyze Intensive Longitudinal Data

By Sebastian Castro-Alvarez, dr. Jorge Tendeiro, prof. dr. Rob Meijer, dr. Laura F. Bringmann,

States and Traits

States

Traits

States and Traits States

Variability

Within

Traits

States and Traits Situational Anxiety Variability Mood Within **Traits**

Latent State-Trait Theory (LST)

Longitudinal SEM Latent State-Trait Theory (LST) Measurement **Error**

Total Variance of Y_{ij}

Total Variance

Latent State-Trait Theory Total Variance of Y_{ii} Consistency Occasion **Specificity**

Intensive Longitudinal Data

Intensive Longitudinal Data

Context Matters!

Intensive Longitudinal Data

Day

Context Matters!

Ż

university of groningen

Can We Study States and Traits with Intensive Longitudinal Data?

Are We Studying States and Traits with Intensive Longitudinal Data?

Multilevel Analysis

Dynamic SEM

Multilevel -(Vector) Autoregressive

Time Series Analyses

Are We Studying States and Traits with Intensive Longitudinal Data?

Multilevel Analysis

Dynamic SEM

Multilevel -(Vector) Autoregressive

Time Series Analyses

Are We Studying States and Traits with Intensive Longitudinal Data?

Multilevel Analysis

Dynamic SEM

Multilevel -(Vector) Autoregressive

Time Series Analyses

Are We Studying States and Traits with Intensive Longitudinal Data?

LST?

Multistate-singletrait (MSST)

States and Traits

States and Traits

Common-Unique Trait-StateMethod(CUTS)Factors

States and Traits

Autoregressive Effect Trait-State-Occasion (TSO)

Multistate-singletrait (MSST)

Common-Unique Trait-State (CUTS)

Trait-State-Occasion (TSO)

Multistate-singletrait (MSST)

Multilevel SEM

Common-Unique Trait-State (CUTS)

Trait-State-Occasion (TSO)

Common-Unique Trait-State (CUTS)

Common-Unique Trait-State (CUTS)

Trait-State-Occasion (TSO)

Trait-State-Occasion (TSO)

Between Model

When is the multilevel version preferable over the single level version?

When is the multilevel version preferable over the single level version?

Are these models suitable to analyze intensive longitudinal data?

Base Model

Simulation Study Number of Base Model Measurements MSST 30 **CUTS** 60 **TSO** 90

Simulation Study Number of Proportion of Base Model Missing Values Measurements 30 **MSST** 0% **CUTS** 60 10% **TSO** 90

Base Model

Missing Values

Χ		MLE	BAYES
Number of Measurements	MSST	\checkmark	\checkmark
	ML-MSST	\checkmark	\checkmark
	CUTS	\checkmark	\checkmark
	ML-CUTS	\checkmark	\checkmark
X	TSO	\checkmark	\checkmark
	ML-TSO	×	\checkmark
Proportion of			

Base Model

Χ		MLE	BAYES	
	MSST	\checkmark	\checkmark	-
Number of	ML-MSST	\checkmark	\checkmark	
Measurements	CUTS	\checkmark	\checkmark	
Χ	ML-CUTS	\checkmark	\checkmark	
	TSO	\checkmark	\checkmark	
	ML-TSO	×	\checkmark	V
Proportion of Missing Values				×100

Timeout

Improper Solutions

BIAS

Abbias

RMSE

Accuracy

Accuracy

Accuracy

Accuracy

Conclusions

If model converges, Multilevel LST = Singlelevel LST.

Conclusions

If model converges, Multilevel LST = Singlelevel LST.

Single-level LST is time consuming and can fail when the number of measurements increases.

Conclusions

If model converges, Multilevel LST = Singlelevel LST.

Single-level LST is time consuming and can fail when the number of measurements increases.

The TSO seems robust and should be used to study states and traits in intensive longitudinal data.

Conceptual Conclusions

ML-(V)AR with measurement error (Schuurman & Hamaker, 2018) ≈ TSO model with one indicator.

Conceptual Conclusions

ML-(V)AR with measurement error (Schuurman & Hamaker, 2018) ≈ TSO model with one indicator.

These models can be easily extended within the DSEM framework.

Thank you