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Sketch of the Argumentation and Overview

Omnipresence of measurement error, severe bias in statistical analysis
when neglecting it

Powerful correction methods based on the “classical model of testing
theory”

construct unbiased estimating functions → zero expectation →
consistency and asymptotic normality
in particular Nakamura’s corrected score functions
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Manski’s Law of Decreasing Credibility

Reliability !? Credibility ?
"The credibility of inference decreases
with the strength of the assumptions
maintained." (Manski (2003, p. 1))

Charles Manski1

1http://faculty.wcas.northwestern.edu/~cfm754/; June 19, 2019
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when neglecting it

Powerful correction methods based on the “classical model of testing
theory”
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The underlying assumptions are very restrictive, and rarely satisfied in
social surveys

Law of Decreasing Credibility

Relax assumptions:

1) What can be done within the classical framework?
2) What can be done beyond the classical framework?
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The Basic Model of Classical Testing Theory (CTT)

Measurement = True Value + Error

X ∗i (︀j⌋︀ = Xi (︀j⌋︀ + Ui (︀j⌋︀ , i = 1, . . . ,n, j = 1, . . . ,p
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The Basic Model of Classical Testing Theory (CTT)

Assumptions on the distribution

E(Ui (︀j⌋︀) = 0 [A1.1]
Var(Ui (︀j⌋︀) = 𝜎2j [A1.2]

Ui (︀j⌋︀ ∼ N(0, 𝜎2j ) [A1.3]

Independence Assumptions “�” (Uncorrelatedness)

Ui (︀j⌋︀ � Xi (︀j⌋︀ [A2.1]
Ui1(︀j⌋︀ � Ui2(︀j⌋︀ i1 ≠ i2 [A2.2]
Ui (︀j1⌋︀ � Ui (︀j2⌋︀ j1 ≠ j2 [A2.3]
Ui1(︀j1⌋︀ � Xi2(︀j2⌋︀ i1 ≠ i2; j1 ≠ j2 [A2.4]
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The Basic Model of Classical Testing Theory (CTT)

The meaningfullness of many well-known measures strongly depends on the
Basic Model of CTT.

reliability Rel(X ,X ∗)

relationship between Rel(X ,X ∗) and Corr(X ,X ∗)

Split-Half-Reliability

Spearman-Brown formula

Cronbach’s alpha
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Corrected Score Functions

Measurement error correction: Find an estimating function
𝜓X∗
(Y,X∗, 𝜗) in the error prone data with

Ep𝜗𝜓
X∗
(Y;X∗;𝜗) = 0.

Nakamura (1990, Biometrika): proceed indirectly and find g(⋅) such
that

E(E(g(Ψnaive)⋃︀ideal data)) = E(g(Ψnaive)) = 0 = E(Ψideal)

g(⋅) with
Eg(Ψnaive ⋃︀ideal data) = Ψideal

corrected score function

Existence for regular GLMs, common survival models etc., given the
Basic Model of CTT holds.
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Measurement error correction: Find an estimating function
𝜓X∗
(Y,X∗, 𝜗) in the error prone data with

Ep𝜗𝜓
X∗
(Y;X∗;𝜗) = 0.

Nakamura (1990, Biometrika): proceed indirectly and find g(⋅) such
that

E(E(g(Ψnaive)⋃︀ideal data)) = E(g(Ψnaive)) = 0 = E(Ψideal)

g(⋅) with
Eg(Ψnaive ⋃︀ideal data) = Ψideal

corrected score function

Existence for regular GLMs, common survival models etc., given the
Basic Model of CTT holds.

But, remember the Law of Decreasing Credibility!
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What can be done within the classical framework?

Measurement error with known dependency of components

Nonnormal measurment error when distribution is known (regularity
conditions on the moment generating functions)

Heteroscedastic error when distribution is known

Normal measurement error with a precise measurement model where
mean or variance are depending on the true value seems to work

Interesting results when replicates are available, mainly by work around
CY Wang (e.g. Wang (2012, Biostatistics)) Ð→ extend to longitudinal
data with constant trend?
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What can be done within the classical framework?

Measurement error with known dependency of components

Nonnormal measurment error when distribution is known (under
regularity conditions on the moment generating function)

Heteroscedastic error when distribution is known

Normal measurement error with a precise measurement model
where mean or variance are depending on the true value seems to work
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Partial Identification

Change the underlying mindset:

Instead of
data + strong assumptionsÐ→ unique model

now
dataÐ→ set of compatible model
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Reliable inference instead of overprecision!!

Adding untenable assumptions to produce precise solution may destroy
credibility of statistical analysis, and therefore its relevance for the
subject matter questions.

Make realistic assumptions and let the data speak for themselves!

Extreme case: Consider the set of all models that are compatible with
the data (and then add successively additional assumptions, if
desirable)

The results may be imprecise, but are more reliable.

The extent of imprecision is related to the data quality!

As a welcome by-product: clarification of the implication of certain
assumptions

Often still sufficient to answer subjective matter question
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Successfully applied in different contexts

Nonrandomly missing data (e.g. treatment evaluation): e.g. Manski
(2002, Springer); Vansteelandt, Goetghebeur, Kenword, Molenberghs
(2006, Stat. Sinica)

Misclassification: Molinari (2008, J Econometrics); Küchenhoff,
Augustin, Kunz (IntJApproxR2014)

Interval data: e.g., Manski & Tamer (2002, Econometrica);
Schollmeyer & Augustin (2015, IntJApproxR); reliable computing in
engineering e.g., Ferson et al.; Kreinovich et al.

Nonrandomly coarsened categorical/ordinal data Plass, Cattaneo,
Augustin, Schollmeyer, Heumann: (2019, IntStatRev)

Imprecise imputation for statistical matching: Endres, Fink &
Augustin (2019, JOffStat)

Augustin 14 / 16



Opportunities and Challenges in the Measurement Error
Context

Use a set of ‘plausible’ measurement error models, for instance

Set of measurement error distributions
Set of dependencies
Generalized independence models
Structure models with varying parameters

Set of corrected score functions

(Convex hull of) parameter estimates

Generalized confidence regions / tests
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Concluding Remarks

Omnipresence of measurement error, severe bias in statistical analysis
when neglecting it

Powerful correction methods based on the “classical model of testing
theory”

construct unbiased estimating functions → zero expectation →
consistency and asymptotic normality
in particular Nakamura’s corrected score functions

The underlying assumptions are very restrictive, and rarely satisfied in
social surveys

Law of Decreasing Credibility

Relax assumptions:

1) Something can be done within the classical framework!
2) Great opportunities when going beyond the classical framework!
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