Towards Generalized Error-in-Variables Modelling: Extended Corrected Score Functions and Partially Identified Measurement Error Correction

T. Augustin

Department of Statistics Ludwig-Maimilians-Universität München (LMU Munich)

Sketch of the Argumentation and Overview

- Omnipresence of measurement error, severe bias in statistical analysis when neglecting it
- Powerful correction methods based on the "classical model of testing theory"

construct unbiased estimating functions \rightarrow zero expectation \rightarrow consistency and asymptotic normality

in particular Nakamura's corrected score functions

Manski's Law of Decreasing Credibility

Reliability !? Credibility ? "The credibility of inference decreases with the strength of the assumptions maintained." (Manski (2003, p. 1))

Charles Manski¹

¹http://faculty.wcas.northwestern.edu/~cfm754/; June 19, 2019

Augustin

Sketch of the Argumentation and Overview

- Omnipresence of measurement error, severe bias in statistical analysis when neglecting it
- Powerful correction methods based on the "classical model of testing theory"

construct unbiased estimating functions \rightarrow zero expectation \rightarrow consistency and asymptotic normality in particular Nakamura's corrected score functions

Sketch of the Argumentation and Overview

- Omnipresence of measurement error, severe bias in statistical analysis when neglecting it
- Powerful correction methods based on the "classical model of testing theory"

construct unbiased estimating functions \rightarrow zero expectation \rightarrow consistency and asymptotic normality in particular Nakamura's corrected score functions

- The underlying assumptions are very restrictive, and rarely satisfied in social surveys
- Law of Decreasing Credibility
- Relax assumptions:
 - 1) What can be done within the classical framework?
 - 2) What can be done beyond the classical framework?

The Basic Model of Classical Testing Theory (CTT)

The Basic Model of Classical Testing Theory (CTT)

Assumptions on the distribution

Independence Assumptions "⊥" (Uncorrelatedness)

The meaningfullness of many well-known measures strongly depends on the Basic Model of CTT.

- reliability $Rel(X, X^*)$
- relationship between $Rel(X, X^*)$ and $Corr(X, X^*)$
- Split-Half-Reliability
- Spearman-Brown formula
- Cronbach's alpha

Corrected Score Functions

• Measurement error correction: Find an estimating function $\psi^{X^*}(\mathbf{Y}, \mathbf{X}^*, \vartheta)$ in the error prone data with

$$\mathbb{E}_{\boldsymbol{p}_{\vartheta}}\psi^{\boldsymbol{X}^{*}}(\mathbf{Y};\mathbf{X}^{*};\vartheta)=\mathbf{0}.$$

• Nakamura (1990, Biometrika): proceed indirectly and find $g(\cdot)$ such that

 $\mathbb{E}(\mathbb{E}(g(\Psi_{naive})|\text{ideal data})) = \mathbb{E}(g(\Psi_{naive})) = 0 = \mathbb{E}(\Psi_{ideal})$ g(·) with

$$\mathbb{E}g(\Psi_{naive}|idea| data) = \Psi_{ideal}$$

corrected score function

• Existence for regular GLMs, common survival models etc., given the Basic Model of CTT holds.

Corrected Score Functions

• Measurement error correction: Find an estimating function $\psi^{X^*}(\mathbf{Y}, \mathbf{X}^*, \vartheta)$ in the error prone data with

$$\mathbb{E}_{\boldsymbol{p}_{\vartheta}}\psi^{\boldsymbol{X}^{*}}(\mathbf{Y};\mathbf{X}^{*};\vartheta)=\mathbf{0}.$$

• Nakamura (1990, Biometrika): proceed indirectly and find $g(\cdot)$ such that

 $\mathbb{E}(\mathbb{E}(g(\Psi_{\textit{naive}})|\text{ideal data})) = \mathbb{E}(g(\Psi_{\textit{naive}})) = 0 = \mathbb{E}(\Psi_{\textit{ideal}})$ $g(\cdot) \text{ with }$

 $\mathbb{E}g(\Psi_{naive}|\text{ideal data}) = \Psi_{ideal}$

corrected score function

- Existence for regular GLMs, common survival models etc., given the Basic Model of CTT holds.
- But, remember the Law of Decreasing Credibility!

What can be done within the classical framework?

What can be done within the classical framework?

- Measurement error with known dependency of components
- Nonnormal measurment error when distribution is known (regularity conditions on the moment generating functions)
- Heteroscedastic error when distribution is known
- Normal measurement error with a precise measurement model where mean or variance are depending on the true value seems to work
- Interesting results when replicates are available, mainly by work around CY Wang (e.g. Wang (2012, Biostatistics)) → extend to longitudinal data with constant trend?

What can be done within the classical framework?

- Measurement error with known dependency of components
- Nonnormal measurment error when distribution is known (under regularity conditions on the moment generating function)
- Heteroscedastic error when distribution is known
- Normal measurement error with a precise measurement model where mean or variance are depending on the true value seems to work

Change the underlying mindset:

Instead of

data + strong assumptions \rightarrow unique model

Change the underlying mindset:

Instead of

data + strong assumptions \rightarrow unique model

now

data \longrightarrow set of compatible model

Reliable inference instead of overprecision!!

- Adding untenable assumptions to produce precise solution may destroy credibility of statistical analysis, and therefore its relevance for the subject matter questions.
- Make realistic assumptions and let the data speak for themselves!
- Extreme case: Consider the *set* of *all* models that are compatible with the data (and then add successively additional assumptions, if desirable)
- The results may be imprecise, but are more reliable.
- The extent of imprecision is related to the data quality!
- As a welcome by-product: clarification of the implication of certain assumptions
- Often still sufficient to answer subjective matter question

Successfully applied in different contexts

- Nonrandomly missing data (e.g. treatment evaluation): e.g. Manski (2002, Springer); Vansteelandt, Goetghebeur, Kenword, Molenberghs (2006, Stat. Sinica)
- Misclassification: Molinari (2008, J Econometrics); Küchenhoff, Augustin, Kunz (IntJApproxR2014)
- Interval data: e.g., Manski & Tamer (2002, Econometrica);
 Schollmeyer & Augustin (2015, IntJApproxR); reliable computing in engineering e.g., Ferson et al.; Kreinovich et al.
- Nonrandomly coarsened categorical/ordinal data Plass, Cattaneo, Augustin, Schollmeyer, Heumann: (2019, IntStatRev)
- Imprecise imputation for statistical matching: Endres, Fink & Augustin (2019, JOffStat)

Opportunities and Challenges in the Measurement Error Context

Opportunities and Challenges in the Measurement Error Context

- Use a set of 'plausible' measurement error models, for instance
 - Set of measurement error distributions
 - Set of dependencies
 - Generalized independence models
 - Structure models with varying parameters
- Set of corrected score functions
- (Convex hull of) parameter estimates
- Generalized confidence regions / tests

- Omnipresence of measurement error, severe bias in statistical analysis when neglecting it
- Powerful correction methods based on the "classical model of testing theory"

construct unbiased estimating functions \rightarrow zero expectation \rightarrow consistency and asymptotic normality in particular Nakamura's corrected score functions

- The underlying assumptions are very restrictive, and rarely satisfied in social surveys
- Law of Decreasing Credibility
- Relax assumptions:
 - 1) Something can be done within the classical framework!
 - 2) Great opportunities when going beyond the classical framework!